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ABSTRACT 
Service discovery systems enable distributed components to find 
each other without prior arrangement, to express capabilities and 
needs, to aggregate into useful compositions, and to detect and 
adapt to changes. First-generation discovery systems can be 
categorized based on one of three underlying architectures and on 
choice of behaviors for discovery, monitoring, and recovery. This 
paper reports a series of investigations into the robustness of 
designs that underlie selected service discovery systems. The 
paper presents a set of experimental methods for analysis of 
robustness in discovery systems under increasing failure intensity. 
These methods yield quantitative measures for effectiveness, 
responsiveness, and efficiency. Using these methods, we 
characterize robustness of alternate service discovery architectures 
and discuss benefits and costs of various system configurations. 
Overall, we find that first-generation service discovery systems 
can be robust under difficult failure environments. This work 
contributes to better understanding of failure behavior in existing 
discovery systems, allowing potential users to configure 
deployments to obtain the best achievable robustness at the least 
available cost. The work also contributes to design improvements 
for next-generation service discovery systems. 
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1. INTRODUCTION 
 
Various teams designed and implemented a first generation of 
(competing) service discovery systems [1-6] that enable 
distributed components to find each other without prior 
arrangement, to express capabilities and needs, to compose into 
collections, and to detect and adapt to changes. Each specific 
design defines a system structure, along with protocols for 
discovery, monitoring, and recovery. Some designs [5,6] assume a 
specific underlying communication technology, and some designs 
[1,5] focus on one application domain. Three designs [2-4] were 
conceived to operate over Internet protocols and to support many 
applications. 

In this paper, we investigate the architectures and 
behaviors underlying Jini Networking Technology1 [2], Universal 
Plug and Play (UPnP) [3], and the Service Location Protocol 
(SLP) [4] when subjected to various failures. Elsewhere [7], we 

                                                 
1 Certain commercial products or company names are identified in this 
paper to describe our study adequately. Such identification is not intended 
to imply recommendation or endorsement by the National Institute of 
Standards and Technology, nor to imply that the products or names 
identified are necessarily the best available for the purpose. 

present a generic model encompassing the designs of these 
systems and we identify performance issues that could arise. 
While this previous work considers system behavior absent 
failures, here we explore the relative ability of discovery systems 
to cope with different types and intensities of failure. 

We reported preliminary results in various conference 
papers [8-11]; however, this paper improves upon earlier work in 
two ways. First, we extend the scope of our results to cover three 
architectures (two-party, three-party, and adaptive), three failure 
scenarios (configuration restoration, service acquisition and 
maintenance, and consistency maintenance), four failure types 
(power failure and restart, node failure, communication failure, 
and message loss), and a set of failure detection and recovery 
techniques at three levels (transport protocols, discovery 
protocols, and application logic). Second, we increase the amount 
of data collected and analyzed to obtain better estimates for 
performance metrics at high failure rates. 

This paper contributes to the understanding of service 
discovery systems. First, this paper characterizes robustness of 
discovery systems under difficult failure environments. This paper 
further identifies and discusses the most significant design and 
configuration decisions that influence robustness. Second, this 
paper identifies specific design and deployment decisions that 
could lead to diminished robustness. Third, this paper quantifies 
the relative cost associated with specific decisions. Overall, the 
information provided here should contribute to better 
understanding of failure behavior in existing discovery systems, 
allowing potential users to configure deployments to obtain the 
best achievable robustness at the least available cost. Further, 
results and discussions presented here could contribute to design 
improvements in the next generation of discovery systems. 

This paper also contributes experimental methods to study 
robustness in distributed systems. First, we introduce and apply 
metrics to quantify relative robustness and cost at the application 
level for various scenarios. Second, we present a technique to 
decompose aggregate robustness into detection and recovery 
latency. Using this technique, we show how similar robustness 
can be achieved through different behaviors arising from 
particular design choices. Our methods can be adopted, adapted, 
or extended by other researchers to investigate failure response in 
distributed systems – a topic due for increased study. 

We begin (in Section 2) with a synopsis of existing work 
comparing and contrasting service discovery systems. Most 
previous work focuses on functional comparisons [12-19], on 
means for translating among discovery systems [20-26], or on 
improving existing designs [27-37]. Our own related work [7, 38-
42] attempts to unify designs for several existing discovery 
systems, and investigates performance problems arising when 
such systems are deployed at large scale. 
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In Section 3, we survey the design and function of service 
discovery systems. We introduce a model to convey concepts 
across selected systems. Using our model, we describe how 
discovery operates under UPnP (a two-party architecture, where 
clients issue multicast queries to find services), Jini (a three-party 
architecture, where clients consult a directory to find services), 
and SLP (which is a three-party architecture that can adapt to 
become a two-party architecture). We also describe two 
mechanisms (polling and notification) used by discovery systems 
to maintain consistent information among distributed replicas. The 
architectures, discovery procedures, and consistency maintenance 
mechanisms described in Section 3 form the basis for scenarios, 
experiments, and results recounted in later sections. 

In Section 4, we introduce selected types of failure that can 
impede a distributed system and we discuss selected techniques to 
detect and recover at three layers. At the lowest layer, transport 
protocols may include detection and recovery mechanisms (e.g., 
acknowledgments, retransmissions, and exceptions). In the middle 
layer, discovery protocols typically include some detection and 
recovery mechanisms (e.g., heartbeats and soft state). At the top 
layer, applications may take recovery actions in reaction to 
exceptions raised by transport protocols. Interactions among these 
detection and recovery techniques can become quite intricate and 
difficult to understand. 

In Section 5, we describe our experiment methodology, 
consisting of six steps: (1) constructing (simulation) models 
reflecting structure, behavior, and deployments of selected service 
discovery systems, (2) incorporating failure models into the 
simulations (3) devising scenarios and related metrics to quantify 
robustness and cost, (4) simulating scenarios for selected 
configurations over a range of failure rates, (5) collecting, 
analyzing, and plotting data from simulations, and (6) 
investigating unexpected results and anomalies. In Section 6, we 
describe the design and results for our experiments: (1) restart 
after power failure, (2) service acquisition and maintenance 
impeded by node failures, and consistency maintenance impeded 
(3) by communication failures and (4) by message loss. We report 
results from these four experiments, which encompass 30 
configurations. For each experiment, we explain the scenario and 
failure model, define metrics, present results, outline findings, and 
discuss unexpected outcomes. We close in Section 7 with a précis 
of our findings and contributions. 

 
2. RELATED WORK 

 
Emergence of various specifications for service discovery 
systems, coupled with the anticipated importance of discovery 
functionality in future distributed systems, has stimulated 
significant interest in understanding similarities and differences 
among competing designs. Most existing comparisons focus on 
architecture, features, and function. A few comparisons also 
consider programming differences, because most discovery 
systems are conceived as middleware to support distributed 
applications. Bettsletter and Renner [12] compare SLP, Jini, 
UPnP, and Bluetooth with respect to architecture, function, and 
features, and consider underlying requirements for programming 
languages, operating systems, and network protocols. The 
comparison is expressed using concepts and terminology specific 
to each discovery system, although the authors do identify three 
common aspects (support for searching on service attributes, 
inclusion of a directory, and use of leasing) for comparison. 
Richard [13] compares software architectures, along with system 

features and functions, for Jini, Bluetooth, Salutation, SLP, and 
UPnP. Elsewhere [17], Richard expands his comparison to include 
programming considerations by providing source code for clients 
and services in Jini, SLP, UPnP, and Bluetooth. Pascoe [15] 
outlines a brief architectural comparison of Jini, UPnP, and 
Salutation, and Rekesh [14] gives a similar comparison that 
appears to be based on Pascoe’s work. In a subsequent paper [16], 
Pascoe amplifies his architectural comparison to include 
comparison of functions and features. O’Driscoll [18], when 
considering a wide range of home networking technology, 
provides descriptions of Bluetooth, HAVi (the Home Audio-
Video interoperability specification), UPnP, and Jini. Though 
giving no direct comparison, O’Driscoll provides a summary of 
architecture, function, and features from which readers may infer 
a comparison. Olivier [19] provides a detailed description of Jini, 
but also includes a brief description of UPnP and a comparison 
between Jini and SLP. None of these comparisons considers 
performance or robustness. 

Limitations in existing comparisons motivated our own 
work. Elsewhere [7], we provide a unified and general model for 
first-generation discovery systems and then show how our model 
can be used to represent Jini, UPnP, and SLP. Our unified model, 
conceived with neutral terminology, provides a basis for direct 
comparison among architectural, functional, and behavioral 
elements of designs. Our model also reveals limitations and open 
issues in existing designs and specifications, and includes a set of 
service guarantees that we believe discovery systems should 
attempt to satisfy. Further, we identify selected performance 
issues that may arise when deploying discovery systems at large 
scale, and we use our model to outline algorithms that might 
improve performance. While our previous work improves on 
existing comparisons, we did not consider robustness under 
various types of failure. The present paper extends our previous 
work by comparing failure response in the major designs for first-
generation discovery systems (as represented by Jini, UPnP, and 
SLP). 

As a natural extension to functional comparisons, some 
researchers conceive protocol translators in order to achieve 
interoperation among dissimilar service discovery systems. For 
example, the Open Services Gateway Initiative (OSGi) [20, and 
also chapter 17 in 18] defines a layer of middleware to bridge 
among Jini, UPnP, and Bluetooth. Miller and Pascoe [21] show 
how to map between the application-level programming interfaces 
of Salutation and Bluetooth. Allard et al. [22] and Sameh and El-
Kharboutly [23] describe different techniques to bridge between 
Jini and UPnP, while Guttman and Kempf [24] consider 
techniques to bridge between Jini and SLP. Similarly, Yu et al. 
[26] define a software structure for middleware that can bridge 
among a diverse set of service discovery systems and distributed 
object systems. Ponnekanti and Fox [25] take a more general tact 
by defining a framework that clients may use to find candidate 
services and to automatically configure an appropriate set of 
proxies and stubs to allow a client to invoke a selected service. 
Only one [23] of these papers investigates performance, and none 
considers the effects of failures. While our paper does not 
consider translation among discovery systems, researchers could 
use our method to investigate and quantify robustness of various 
designs for bridges and translators. 

Beyond first-generation systems for discovery of services 
operating in close proximity, researchers in industry and academe 
are investigating how to build discovery systems that scale over a 
wide area. An early proposal, known as Universal Description, 
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Discovery and Integration (UDDI) [36], defines well-known, 
web-accessible repositories, where service descriptions may be 
deposited so that clients may query for services of interest. The 
UDDI approach exhibits limited scalability because every service 
in a network must deposit its description with a central directory, 
or else with multiple replicas of a central directory. To overcome 
such limitations, researchers continue to propose a number of 
more flexible approaches. One early idea, E-speak [28], used an 
expanding-ring multicast search to discover directories that 
organized into a federated topology through which service 
descriptions permeated over time. A similar idea is contained in 
JXTA [29], where a peer-to-peer system is used to disseminate 
copies of service descriptions throughout a topology of caches, 
and in Neuron [32], a self-organizing and self-tuning topology of 
caches that can tolerate failures of nodes and communication 
links. Other self-organizing directories have also been proposed, 
including SRIRAM [31], NeuroGrid [34], and the Secure Service 
Discovery Service [27]. A somewhat different approach [30] 
forms a logical ring (based on node addresses) that helps 
individual nodes to bootstrap into various available overlay 
networks, each of which advertises services. Grid researchers 
have also proposed a design for wide-area service discovery [33], 
coupled with the ability to inject and disseminate real-time status 
information [35]. Most of these designs include provisions to 
detect and recover from failures or to mitigate failures; however, 
no comprehensive results exist that compare robustness among 
various designs. While this paper investigates robustness only for 
local discovery, we suspect that our method could be applied to 
quantify and compare robustness among designs for wide-area 
discovery. 

 
3. MODELING SERVICE DISCOVERY SYSTEMS 
 
Service discovery systems enable components in a network to 
discover each other, and to determine if discovered components 
meet specific requirements. Further, discovery systems include 
consistency-maintenance mechanisms, which can be used by 
applications to detect changes in component availability and 
status, and to maintain, within some time bounds, a consistent 
view of distributed components. Many diverse industry activities 
explore different approaches to meet such requirements, leading 
to a variety of proposed designs [1-6]. Some groups approach the 
problem from a vertically integrated perspective, coupled with a 
narrow application focus. Other groups propose more widely 
applicable solutions. For example, a team of researchers and 
engineers at Sun Microsystems designed Jini Networking 
Technology [2], a discovery system atop Java, which provides a 
base of portable software technology. As another example, a 
group of engineers at Microsoft and Intel conceived Universal 
Plug-and-Play (UPnP) [3] to extend plug-and-play from single 
computers to distributed systems. Similarly, the efforts of Sun 
Microsystems and other companies led to the Service Location 
Protocol (SLP) [4], aimed at providing service discovery for the 
Internet.  

While these designs appear quite different, the systems 
share some common traits. First, they all assume availability of 
the Internet protocols as a base. Second, they all provide general 
approaches to describe the capabilities and status of services. 
Third, they all include mechanisms that can be used to detect and 
recover from failures. Jini, UPnP, and SLP differ in architecture, 
in approach to describing services, and in assumptions about how 
to use transport protocols. This interesting combination of 

similarities and differences led us to base our comparative study 
on Jini, UPnP, and SLP. Our main challenge was finding a means 
to clearly understand and represent similarities and differences 
among the three systems. To address this challenge, we developed 
a general model with common terminology and then mapped 
concepts from each specific system into our model. 

 
3.1 A General Model of Service Discovery Systems 
 
Our model provides a basis for comparative analysis of various 
discovery systems by representing major architectural components 
and concepts with a consistent and neutral terminology (see first 
column in Table 1). The main components in our model include: 
(1) service user, (2) service manager, and (3) service cache 
manager.  A service user (SU) is a client in a service discovery 
system.  A SU is concerned with discovering services from 
components within the distributed system, acquiring access to 
discovered services, and using discovered services.  A service 
manager (SM) maintains a database of service descriptions, each 
of which encodes the characteristics of a particular service 
provider (i.e., the provider of the service). Each service 
description (SD) contains the identity, type, and attributes that 
characterize a service provider (SP). Each SD also includes the 
addresses of software interfaces (e.g., an application-
programming interface or graphic user interface) to access a 
service. A SU seeks SDs satisfying specific requirements. A 
service cache manager (SCM) operates as an intermediary, 
matching advertised SDs from SMs to requirements provided by 
SUs. SCMs are optional components supported by some, but not 
all, discovery systems.  Table 1 shows how these general concepts 
map to specific concepts from Jini, UPnP, and SLP. 
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The behaviors by which (Jini, UPnP, and SLP) SUs 

discover and maintain consistency in relevant SDs depend in part 
upon the system architecture and design and in part on the 
transport protocols used. Transport protocols are used for two 
kinds of message exchange: (1) multicast, in which transmitted 
messages are conveyed to all receivers that participate in a 
multicast group and (2) unicast, which is point-to-point 
communication directly between a pair of corresponding entities. 
Both Jini and UPnP use the UDP (User Datagram Protocol) for 
exchanging multicast messages and use the TCP (Transmission 
Control Protocol) for exchanging unicast messages. UPnP also 
uses UDP to unicast answers to multicast queries. SLP uses UDP 
for exchanging both multicast and unicast messages. The 
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differences in transport protocols become significant when 
considering approaches to detect and recover from failures; 
therefore, we defer (until Section 4) a more detailed discussion. 
Here, we focus on behavioral differences arising from variations 
in architecture and design. 

 
 

 

 

 

 

 

 

 

 

 

 
3.2 Modeling Service Discovery Architectures and Protocols 
 
Our analysis of six distinct discovery systems revealed that most 
designs use one of two architectures: two-party or three-party. 
One discovery system we examined uses both architectures 
together. A two-party architecture consists of two major 
component types: SMs and SUs. Figure 1 illustrates a two-party 
architecture (configured for UPnP). Service discovery occurs 
through interactions between these two component types; SUs 
discover SMs and then query them for suitable SDs. A three-party 
architecture adds a third component type, the SCM, which 
contains a directory. Figure 2 illustrates a three-party architecture 
(configured for Jini). In a three-party architecture, both SMs and 
SUs first discover SCMs to serve as intermediaries. SMs deposit 
SDs with SCMs and SUs interact with SCMs to obtain suitable 
SDs. A third architectural variant (supported by SLP) employs 
both the two-party and three-party architecture and is capable of 
switching between them, depending on circumstances. We call 
this an adaptive architecture. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.1 Discovery in Two-Party Architectures. Given a two-
party architecture, we model the behavior of participating SMs 
and SUs. Upon startup, each SU and SM engages in a discovery 
process to locate other relevant components within the network 
neighborhood. We chose behaviors described in the specification 
for UPnP [3]. 

In a lazy-discovery process, each SM periodically 
announces existence of its SDs over a designated UPnP multicast 
group. Upon receiving these announcements, SUs with matching 
requirements use a HTTP (HyperText Transfer Protocol)/TCP 
unicast link to request, directly from the SM, copies of the SDs 
associated with relevant SPs. The request is made using an HTTP 
GET request. The SU stores SD copies in a local cache. 

HTTP/TCP and HTTP/UDP 

Service
User

Service
User

Service
Manager

UPnP  Multicast Group

Unicast Links

Alternatively, the SU may engage in an aggressive-
discovery process, where the SU transmits SD requirements, as 
Msearch queries, on the UPnP multicast group. Any SM holding 
a SD with matching requirements may use a HTTP/UDP unicast 
link to respond (after a jitter delay) directly to the SU. Whenever a 
SM responds to an Msearch query (or announces itself), it 
repeats a sequence of messages, with separate messages for 
distinct devices and service types managed by the SM. For each 
appropriate response, the SU uses a HTTP/TCP unicast link to 
send an HTTP GET request for a copy of relevant SDs, caching 
them locally. 

Figure. 1 Two-party service discovery system deployed 
in a topology with three service users (SUs) and thee 
service managers (SMs). 

In UPnP, multiple HTTP GET requests are required to 
transfer the SD, because each SD consists of two parts. To 
maintain a SD in its local cache, a SU expects to receive periodic 
announcements from the relevant SM. In UPnP, the SM 
announces the existence of SDs at a specified interval, known as a 
Time-to-Live, or TTL (1800 s minimum recommended). Each 
announcement specifies a TTL value. If the SU does not receive 
an announcement from the SM within the TTL (or a periodic SU 
Msearch does not succeed within that time), the SU may 
discard the discovered SD.    

3.2.2 Discovery in Three-Party Architectures. Given a 
three-party architecture, we model the behavior of participating 
SCMs, SMs, and SUs, which each engage in a discovery process 
upon startup. We chose behaviors described in the Jini 
specification [2], where SMs and SUs attempt to discover any 
intermediary SCMs that exist in the network neighborhood. 

Upon initiation, a Jini component enters aggressive 
discovery, where it transmits probes on a designated aggressive-
discovery multicast group at a fixed interval (5 s recommended) 
for a specified period (seven times recommended), or until it has 
discovered a sufficient number of SCMs. Upon cessation of 
aggressive discovery, a component enters lazy discovery, where it 
listens on a designated lazy-discovery multicast group for 
announcements sent at intervals (120 s recommended) by SCMs. 
Our three-party model implements both the aggressive and lazy 
forms of Jini multicast discovery. 

Service
Manager

Service
User

Service
Cache

Manager

Aggressive-Discovery Multicast Group

Remote Method Invocation

Unicast Links

Lazy-Discovery Multicast Group

Once discovery occurs, a SM deposits a copy of the SD for 
each of its services on the discovered SCM. The SCM caches this 
deposited state, but only for a specified length of time, or TTL. To 
maintain a SD on the SCM beyond the TTL, a SM must refresh 
the SD. In this way, if the SM fails, then the SCM can purge any 
SDs deposited by the SM. SUs may query discovered SCMs for 
SDs of interest. Alternatively, a SU may deposit a query with the 
SCM, which will attempt to match SDs provided by SMs to 
specifications of the deposited query. The SCM forwards any 
matching SDs on to the SU that deposited the relevant query. 

Figure 2. Three-party service discovery system deployed in 
a topology with three service users (SUs), three service 
manager (SMs), and three service cache manager (SCMs). 

3.2.3 Discovery in Adaptive Architectures. An adaptive 
architecture requires SMs and SUs to rendezvous through a SCM, 
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but allows direct SM-SU interaction when no SCM is available. If 
SMs and SUs interact directly and a SCM becomes available, then 
the architecture requires SMs and SUs to resume interacting 
through the SCM. We use the term mode switching to denote this 
ability to change architectural configurations (i.e., to switch 
between two- and three-party architectures). To model an adaptive 
architecture, we chose behaviors from the SLP specification [4]. 

SLP systems are configured by default to operate in three-
party mode, switching to two-party mode when SCMs are 
unavailable. Like Jini, three-party SLP discovery requires that 
SMs and SUs first discover intermediary SCMs. Upon initiation, a 
SLP SM or SU enters aggressive discovery, where every 900 s it 
transmits six probes within a fixed interval of 15 s on a designated 
aggressive-discovery multicast group. On the other hand, a SLP 
SCM and SM component commences lazy discovery, where it 
emits announcements on a designated lazy-discovery multicast 
group at recommended intervals of 10800 s (once every three 
hours), which we lowered to 120 s in all experiments to provide 
more consistent behavior in the adaptive and three-party 
architectures. When operating in three-party mode, SLP SUs and 
SMs rendezvous through SCMs. After discovery, SLP SMs 
employ procedures (similar to Jini) to deposit SDs for relevant 
services on discovered SCMs for a specified TTL, and then to 
refresh deposited SDs. To make behavior as consistent as possible 
across our models, we decided to use the same TTLs (on a per 
experiment basis) for a SD to be cached by a SCM. We denote a 
specific choice of TTL when describing each experiment (see 
Section 6). SUs query SCMs for SDs matching their requirements. 
SCMs process queries, matching SDs against SU requirements, 
and forward matches to SUs. SUs can cache the response and 
contact the related SPs to obtain use of the service. 

When SLP SUs and SMs fail to detect SCMs, they switch 
to two-party mode. In two-party mode, a SLP SU both listens for 
lazy announcements from SMs and transmits the aggressive-
discovery six-message probe sequence at 900 s intervals, while 
SMs listen for probes and respond as appropriate.  Upon receiving 
a lazy announcement or an aggressive-probe response, a SLP SU 
(in two-party mode) queries the SM for SDs matching its 
requirements. The SM responds with matching SDs, which the SU 
caches locally. In the meantime, SUs continue to search for a 
SCM, using both lazy and aggressive discovery. Upon finding a 
SCM, SLP requires the SU to switch to three-party mode and to 
cease direct contact with SMs discovered in two-party mode. All 
further contact with SMs must take place through SCMs. 

 
3.3 Modeling Consistency Maintenance Mechanisms 
 
Service discovery systems include consistency-maintenance 
mechanisms to ensure that changes to critical information about 
services can be propagated to interested SUs. Critical information 
could include service availability and capacity, and updates to 
descriptive information about service capabilities. Discovery 
systems that we analyzed provide one or both of two consistency-
maintenance mechanisms: polling and notification. We discuss 
each in turn. 

3.3.1 Polling. In polling, a SU periodically sends queries to 
obtain up-to-date information about a SD that was previously 
discovered, retrieved, and cached locally. In a two-party 
architecture, the SU issues the query directly to the SM from 
which the SD was obtained; thus, we model the UPnP HTTP GET 
request mechanism to poll the SM to retrieve a SD associated with 
a specific URL (Uniform Resource Locator). In response, the SM 

provides a SD containing a list of supported services, including 
relevant attributes. 

Polling in a three-party architecture consists of two 
independent processes. In one process, a SM sends a request to 
propagate an updated SD to each SCM on which the SD was 
originally cached. In Jini, this request takes place through a 
ChangeService message, which causes the SCM to update the 
cached SD. In SLP, the SM re-registers the SD, which causes the 
SCM to replace the previously deposited SD with the new version 
and an updated TTL. In a second process, each SU polls relevant 
SCMs by periodically issuing a query for a copy of SDs that the 
SU has previously retrieved and cached. The SCM replies with 
matching SDs. In Jini, the poll is implemented with a 
FindService request and a MatchFound reply; SLP polls 
(SCMs in three-party mode and SMs in two-party mode) with 
SrvRqst and SrvReply messages, respectively. We adopted a 
180 s polling interval for all architectures. 

3.3.2 Notification. Notification requires that updates be 
transmitted to interested parties immediately after they occur. We 
model notification only for the two-party and three-party 
architectures (i.e., not for the adaptive architecture), because the 
SLP specification that we used does not include notification. 

In two-party notification, a SM sends events to a SU that 
indicates a SD has changed. To receive events about a SD of 
interest, a SU must first register with the SM for this purpose. We 
model this procedure using the UPnP subscription mechanism, 
where the SU sends a Subscribe request, and the SM responds 
by either accepting or denying the request. The subscription, if 
accepted, is retained for a TTL, which may be refreshed with 
subsequent Subscribe requests from the SU. In our 
experiment, we chose 1800 s as TTL for subscriptions in both (the 
two- and three-party) architectures. 

Three-party notification requires a two-step procedure, 
which we model as specified for Jini. First, SUs must register with 
SCMs to receive notification about SDs of interest. The SCM 
registers the notification request for a specified TTL, which may 
be refreshed. Second, a SM issues a ChangeService to 
propagate a SD update to all SCMs on which the SM has 
previously deposited the SD. When the SCM receives a 
ChangeService request from a SM for a SD it has cached, the 
SCM issues a MatchFound that propagates the updated SD to 
all SUs that have registered to receive such notifications. 

 
4. MODELING FAILURE DETECTION AND 

RECOVERY TECHNIQUES 
 
Interactions among distributed components may be impeded by 
failures; thus, such components must be prepared to detect failures 
and take recovery actions. In this section, we review the types of 
failure that can impede interactions and then we describe selected 
failure detection and recovery techniques. We explain how we 
incorporated the techniques into our models. 
 
4.1 Failure Types 
 
We classify failures into two general categories: process failures 
and communication failures. Process failures can be caused by 
cyber attacks, by programming errors, or by hardware failures. 
We can subdivide process failures into node and thread failures. 
During a catastrophic failure, processing in a node ceases, and the 
node must reinitialize before processing resumes. Some 
information maintained by the node may persist across the failure, 
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while other information may be lost. The nature and condition of 
persistent information could prove crucial to a node’s behavior 
after processing resumes. Of course, the node might never 
reappear. Thread failures, while less catastrophic, can be more 
troublesome than node failures. A node might rely on certain 
long-running threads to react to events from other nodes. Failure 
of selected threads can interfere with the operation of the node, as 
well as other nodes. In some cases, a node can appear to be 
present, while being effectively inoperable. Since the effects of 
node and thread failure are similar, we focus only on node failure 
in this study, allowing the effects of thread failure to be inferred. 

Communication failures can arise due to jamming, or other 
interference, due to congestion, due to denial of service attacks, 
due to physical severing of cables, due to improperly configured 
or sabotaged routing tables, or due to multi-path fading as nodes 
move across a terrain. We subdivide communication failures into 
three classes: interface failures, message loss, and path failures. A 
communication interface in a node may fail fully (both transmit 
and receive) or partially (either transmit or receive). All outbound 
messages from an interface will be lost when the transmitter fails, 
while all inbound messages will be lost when the receiver fails. 
Message loss, a less severe failure, implies that individual 
messages may be dropped, either sporadically or in bursts. Path 
loss appears as a blocked communication route between two 
nodes, or areas, in a network. A path can be blocked in one or 
both directions. Because effects of path failure are similar to 
interface failure, we studied only interface failure. 

 
4.2  Failure Detection and Recovery Techniques 
 
In service discovery systems, failure detection and recovery 
responsibilities are divided among three parties: (1) transport 
protocols, (2) discovery protocols, and (3) applications. The 
transport protocols support the discovery protocols and the 
application, while the application also relies on the discovery 
protocols. We first describe failure detection and recovery 
provided by transport protocols, such as TCP and UDP. We then 
discuss heartbeats and soft state ⎯ the main detection and 
recovery techniques implemented by discovery protocols. 
Subsequently, we discuss remote exceptions and retries, which are 
the main detection and recovery techniques available to 
applications and selected discovery processes. We describe how 
we model these techniques. 

4.2.1 Recovery by Transport Protocols. Discovery 
protocols and applications use recovery services from three types 
of transport: (1) unreliable multicast protocols, (2) unreliable 
unicast protocols, and (3) reliable unicast protocols. We discuss 
each in turn. 

Unreliable Multicast Protocols. Unreliable protocols, 
whether multicast or unicast, neither recover nor signal lost 
messages; thus, neither source nor destination will learn of a loss. 
Further, multicast protocols exchange messages along a tree of 
receivers. For this reason, a multicast message might be received 
by some nodes, but not by others. A failure near a multicast 
source prevents messages from being received by any node in the 
multicast tree, while a failure near a receiver prevents messages 
from being received by only a single node in the tree. Of course, 
failures at intermediate points in the tree could result in messages 
being lost to subsets of receivers. All three systems we studied 
(UPnP, Jini, and SLP) employ unreliable UDP multicast 
protocols. 

When simulating UDP transmission, our models discard 
messages lost due to congestion and due to interface failures. 
During interface failure, the models discard all messages sent 
from a node with a failed transmitter, as well as all messages 
inbound for a node with a failed receiver. Neither sender nor 
receiver learns the fate of lost messages. Since unreliable 
protocols provide no guarantees, recovery must be provided by 
mechanisms at a higher layer. 

Unreliable Unicast Protocols. Among the systems we 
studied, both SLP and UPnP use an unreliable unicast protocol. 
SLP uses unicast UDP to transmit SrvRqst messages, used for 
queries, and to transmit SrvReg messages for registrations and 
registration renewals. To improve reliability, SLP employs two 
additional procedures. First, SLP issues redundant SrvRqst 
messages; each request is sent four times within a 15 s interval. 
Second, SLP requires a waiting period (we used 15 s) to listen for 
a corresponding SrvRply. If no SrvRply is received within 
that time, then the message transmission is abandoned and a 
remote exception (REX) is declared so that a higher layer entity 
can decide upon an appropriate recovery action. Our SLP models 
incorporate this behavior. 

UPnP uses unicast UDP to send responses to Msearch 
queries. To improve the reliability of these responses, UPnP 
requires that each UDP message be sent multiple (n) times.  In our 
model, we set n=2. 

Reliable Unicast Protocols. Reliable unicast protocols 
include mechanisms that attempt to ensure message delivery by 
detecting and re-transmitting lost messages. Of course, the 
reliability schemes may eventually give up if too many 
retransmissions are needed (which might indicate node or 
interface failure). In such cases, the reliable unicast protocol will 
signal to a higher layer that a message was (probably) not 
delivered. For example, Jini uses Remote Method Invocation 
(RMI) over TCP to invoke a method on a remote object, and to 
receive a response and UPnP uses TCP to submit HTTP requests 
and receive HTTP responses. Either the RMI layer (in Jini) or the 
TCP layer (in UPnP) can signal a remote exception (REX).  

Our model unifies reliable unicast protocols into one set of 
procedures that simulate TCP in two phases: connection 
establishment and data transfer. The connection establishment 
phase consists of exchanging connection request and response 
messages. Both connection requests and responses may involve 
multiple retries before a connection is established. We simulate 
connection request retries with delays of 6 s, 24 s, and 24 s, before 
signaling the connection requester with a REX 24 s after the final 
retry (78 s after the initial request).  

Successful connection establishment initiates a data-
transfer phase, where the connection requester sends a data 
request and may await a data response. The data request and 
response may be subject to retransmissions. We compute a 
retransmission timeout (RTO) that is roughly the round-trip time, 
or RTT. We increase the RTO by 25% with each successive 
retransmission. Retries in the data-transfer phase continue until a 
time threshold (60 s) is reached, after which the transmission 
attempt is abandoned. Failure of a data request causes a REX to 
be issued to the requester. Failure of a data response causes a 
REX to be issued to both the requester and responder. The 
requester cannot determine whether a REX was caused by failure 
to transmit the request or by failure to receive a response. The 
responder has more information, as it does not receive a REX 
when an inbound request fails, but does receive a REX when its  
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outbound response fails. In essence, while reliable unicast 
protocols attempt to deliver messages in the face of various 
communication failures, ultimately the reliability mechanisms 
might prove insufficient, causing a higher-layer process to be 
notified of the failure. In such cases, the higher-layer process is 
free to determine an appropriate recovery strategy. 

4.2.2 Recovery by Discovery Protocols. Components in a 
discovery system may also learn of failure by listening for 
recurring messages sent by remote components, much as a 
heartbeat is monitored to assess patient health. For example, 
UPnP SMs periodically multicast lazy announcements advertising 
SDs. Similarly, Jini and SLP SMs periodically refresh SD 
registrations on SCMs by sending unicast messages, and then 
listening for responses. Both lazy announcements and registration 
refresh messages convey soft state (or information) — in this case, 
the SD, which a receiver can cache for a period consistent with 
the associated TTL. When subsequent heartbeat messages fail to 
arrive within the TTL, a listener may assume failure of the SM 
and thus discard cached information about its related SD, 
effectively eliminating knowledge about existence of the related 
service. 

Our models use a form of soft state that allows SDs for 
failed components to be discarded and then to be either 
rediscovered or replaced. For example in our two-party model, 
once a UPnP SU discards knowledge of a SM and any associated 
SDs, the SU commences periodic multicast (Msearch) queries to  
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Table 2.  Summary of Recovery Mechanisms and Key Parameters. 
 

 
search for a new instance of the service. Once the SU regains a 
SD meeting its requirements, the related queries cease. SLP 
employs an analogous procedure when operating in two-party 
mode. 

The process is more complicated in three-party situations. 
Here, failure of refresh messages causes SCMs to discard a 
service registration. A SU may monitor the status of the SD by 
periodically polling the SCM. When poll responses indicate the 
SD is no longer present on the SCM, the SU may then discard its 
cached copy of the SD. In Jini, SUs may also register with the 
SCM to be notified when the SCM discards the SD. When 
receiving such notification, a SU discards its cached copy of the 
SD and then attempts to find a replacement by querying the SCM 
for another SD that satisfies its requirements. Meanwhile, a SM 
for a SD discarded by the SCM might recover after failures are 
repaired. The SM may rediscover the SCM through aggressive or 
lazy discovery, and then reregister the lost SD. The SU, if it has 
not found a replacement, can then receive the original SD by 
querying the SCM (Jini and SLP) or through notification (Jini). 

Table 2 summarizes the way in which we model heartbeat 
and soft state for each of our models. The table indicates values 
we adopted across all experiments (except as otherwise indicated 
in the table and discussed in Section 6). Though SCM discoveries 
could also be retained by SMs and SUs on a soft-state basis, the 
discovery systems we studied use an application-level technique 
to detect SCM failures. 
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4.2.3 Recovery by Applications. When failure detection 
leads to a REX, discovery systems generally expect application 
software to initiate recovery, guided by an application-level retry 
policy. In our models, depending on the situation, we implement 
three different policies: (1) ignore the REX, (2) retry the operation 
for some period, and (3) discard knowledge. The discard strategy, 
employed following repeated failure of the retry strategy, relies 
upon discovery mechanisms to recover from failures that are more 
persistent. These strategies (discussed below) are summarized in 
Table 2. 

Ignoring the Remote Exception. In general, our models 
ignore any REX received when responding to a request, relying 
on the requester to retry. A SU can ignore a REX received when 
issuing a poll (e.g., FindService, SrvRqst, or HTTP GET) 
because the poll recurs at an interval. A Jini SCM (three-party 
model) or UPnP SM (two-party model) also ignores a REX 
received while attempting to issue a notification. This behavior, 
which is described in both the Jini and UPnP specifications, 
depends upon TCP to provide reliability for notifications. 
Notifications include sequence numbers that allow a receiving 
node to determine whether or not previous notifications were 
missed. 

Retrying the Operation. In our models, we retry selected 
operations in the face of a REX. The UPnP specification separates 
the operation of discovering a service from obtaining a description 
of the service (Jini combines these operations). Without a 
description, a service cannot be used. For this reason, in the UPnP 
model, a SU must issue a HTTP GET to obtain a description. If no 
description arrives within 180 s, then our model retries the HTTP 
GET. If unsuccessful after three attempts, the SU purges the 
related SD and discards knowledge of the SM.  Our three-party 
models, based on Jini and SLP, also contain a retry strategy, but 
associated with attempts to register or change a SD with a SCM. 
In these cases, the SM retries a ChangeService or 
ServiceRegistration 120 s after receiving a REX. 
Similarly, when a SU receives a REX (from either a SM or SCM) 
in response to a request to register for notification, the SU retries 
the registration in 120 s. These retries recur up to some time 
bound, after which the SM discards knowledge of the SCM. 

Discarding Knowledge. Both the two-party and three-party 
models include the possibility that an application can discard 
knowledge of previously discovered nodes. After discarding 
knowledge of a SM or SCM, all operations involving that node 
cease until it is rediscovered, either through lazy or aggressive 
discovery. 

In our UPnP model, SUs discard a SM (and any related 
SDs) after failure to receive announcements from a SM within a 
TTL or after three unsuccessful retries of a HTTP GET. In our 
SLP model (two-party mode), SUs do not discard SMs after 
failure to receive announcements. We took this decision because 
the SLP specification does not require SUs to discard a SM when 
missing a heartbeat. 

In our three-party model (based on Jini), a SM or SU 
deletes a SCM after a period (varied by experiment) of receiving 
only REXs when attempting to communicate with a SCM. We 
adopt this behavior because the Jini specification states that a 
discovering entity may discard a SCM with which it cannot 
communicate. While the SLP specification is silent on these 
issues, we implemented our SLP model (in both two-party and 
three-party modes) so that SUs discard SMs after a period (varied 
by experiment) of continuous REXs. We took this decision to 
align this behavior among all our models.  

 
5. EXPERIMENT METHODOLOGY 
 
We adopted a common approach to modeling, to experiment 
design, and to metrics for analysis. Aspects of the approach seem 
suited to investigation of failure response in other classes of 
distributed systems. Below, we discuss our approach. 

Model Construction. We created simulation models for the 
three architectures we found. Executable models enabled us to 
understand collective behavior among distributed components. 
We based the structure and behavior of our models (recall Section 
3) on specifications for UPnP [3] (two-party architecture), Jini [2] 
(three-party architecture), and SLP [4] (adaptive architecture). 
Each model comprises a set of components (and relationships 
among them), interactions (as messages received by components), 
behavior (as actions taken in response to messages, including 
generating new messages), and variables (to represent internal 
state of components). Components communicate via a simulated 
transport service that represents multicast UDP and unicast UDP 
and TCP (as explained in Section 4.2.1). The transport service can 
be impeded by simulated message loss and interface failures. We 
used Rapide [43], an architecture description language and 
accompanying toolset developed at Stanford University, to 
implement models of Jini and UPnP; for SLP we used SLX, a 
simulation system developed by Wolverine Software [44]. We 
chose to use two different simulation systems in order to establish 
the generality of our approach. We note that the Rapide system 
automatically records causal event traces and provides tools to 
visual and analyze those traces. 

Experiment Design. With simulation models in hand, we 
designed experiments to investigate failure response for selected 
configurations of components, where each configuration 
represents a distinct combination of architecture (two-party, three-
party, or adaptive), number of deployed SCMs, and choice of 
behaviors for discovery, consistency maintenance, and recovery. 
We approached experiment design by focusing on the types of 
failures (recall Section 4.1) that might interfere with system 
operation. We decided to consider four failure types: (1) power 
failure and restart, (2) node failures, (3) interface failures, and (4) 
message loss. For each failure type, we constructed an 
application-level scenario to exercise simulated topologies. Our 
scenarios include: (1) recovering a previously discovered 
configuration (on restart after power failure), (2) maintaining 
operational capability in a distributed real-time control application 
(impeded by failure of nodes hosting needed components), and (3) 
maintaining consistency of distributed information (when 
communication is impeded by interface failures or message 
losses). For these scenarios, we simulated various configurations 
of our models with parameters selected to ensure that observed 
performance differences resulted only from differences in system 
architecture and protocol. For three scenarios (node failures, 
interface failures, and message loss), we subjected each 
configuration to increasing failure rates, while measuring system 
response. To focus on fundamental differences in the designs for 
discovery systems, we excluded a number of possible application-
level choices, such as local caching of service descriptions and 
varying subscription lengths. 

Metrics. To compare failure response among simulated 
configurations, we defined metrics specific to each scenario. 
Broadly these metrics fall into three categories: (1) effectiveness, 
which is the ability of a distributed system to exhibit a desired 
state, expressed as a probability that the state is reached or a 
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proportion of time a system is in the desired state; (2) 
responsiveness, which is the time taken, or latency, to reach the 
desired state; and (3) efficiency, which is the amount of effort, 
measured by the number of messages, required for a distributed 
system to complete a scenario. For most combinations of 
configuration and scenario, we conducted repeated simulations 
and then we plotted (on the y-axis) performance on a metric 
against increasing failure rate (on the x-axis). The graphs also 
include a table that summarizes performance by averaging a 
metric across all failure rates; this summarization of the plotted 
curves gives a quick comparison of relative performance. An 
exception to this general approach to measurement occurs for the 
scenario related to restart after power failure, where there is no 
increasing failure rate. In this case, we simply provide the average 
and variance of the latency before a configuration is restored. In 
selected cases, we analyzed event traces to understand how 
differences in architecture, topology, and behavior contribute to 
differences in performance. 

 
6. EXPERIMENTS AND RESULTS 
 
In this section, we describe our scenarios and exhibit results. For 
each scenario, we describe the related experiment, delineate the 
failure model and recovery parameters, define the metrics, display 
the results and discuss underlying causes. We begin in Section 6.1 
with the power-failure-and-restart scenario and then consider in 
Section 6.2 the distributed real-time control scenario impeded by 
node failures. Subsequently (in Section 6.3), we discuss the 
consistency maintenance scenario impeded by communication 
failures of two types: interface failures and message losses. 
 
6.1 Recovery After Power Failure 
 
In this experiment, a distributed system establishes an initial 
configuration in which pairs of SUs and SMs rendezvous, so that 
each SU obtains one required service. Subsequently, a power 
failure causes all nodes to crash. Upon power restoration, each SU 
attempts to rediscover the previously acquired service. This 
experiment measures the latency until the initial configuration is 
restored. 

6.1.1 Experiment Description. This experiment compares 
several system designs: a two-party model (based on UPnP), a 
three-party model (based on Jini), and an adaptive model (based 
on SLP). In the two-party case, the topology (recall Figure 1) 
consists of six nodes: three SUs and three SMs. We partition the 
nodes into three SU-SM pairs that attempt to rendezvous. In the 
three-party cases (Jini and SLP), the topology (recall Figure 2) 
adds three SCMs for a total of nine nodes; however, we use 
logical partitioning (Jini groups and SLP scopes) so the each SU-
SM pair must discover each other through a different SCM; so 
that a previously discovered configuration may not be 
rediscovered until all nodes have restarted. We allow all SU-SM 
pairs to rendezvous, which establishes an initial configuration, and 
then we simulate a power failure lasting 40 s. We restore power 
and wait for SUs to rendezvous with the previously discovered 
SMs. Once the initial configuration is restored the scenario ends. 

Each model includes parameters set to the values indicated 
in Table 3. The first three rows in Table 3 show parameters 
unique to specific discovery systems. These parameters include 
the pattern for aggressive-discovery probes and the interval for 
lazy-discovery announcements. Jini and UPnP allow SUs to 
register for notifications; we assume such registrations are lost on 

node failure. SLP does not allow notifications and thus requires 
SUs to poll SCMs to discover services. We instantiated the 
adaptive architecture with two different polling intervals: 31 s as 
recommended for SLP and 5 s in order to gain early acquisition of 
services. The fourth row of Table 3 shows parameters for which 
we selected common values across all models. In particular, note 
that each node has a restart delay, which in most cases is not 
defined in discovery specifications. Since the specification for Jini 
recommends a random delay distributed uniformly between 2 s 
and 15 s before commencing discovery operations, we decided to 
assign this same strategy to all of our models in order to eliminate 
this as a source of difference. The final row of Table 3 lists 
common transmission and processing delays that we used for each 
model.  

 
 Table 3.  Parameters For Power Failure and Restart Experiment. 
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6.1.2 Metrics. We defined two metrics to compare system 
performance: restoration latency and efficiency.  Restoration 
latency measures the elapsed time from restoration of power until 
the initial configuration is reestablished. Since restoration latency 
depends upon the starting time of the last system component, we 
defined restart delay to measure the elapsed time from restoration 
of power until the final system component restarts. We defined 
efficiency as the total number of messages during restoration 
latency. 
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6.1.3 Results. Table 4 presents results, measured over 30 
repetitions, for four different configurations. The metrics reveal 
that for most configurations, restart delay is the dominant 
component of restoration latency; the previous configuration is 
restored within about 2 s after all nodes have restarted. An 
exception arises when we configure the adaptive architecture with 
a 31 s polling interval. Here, the polling interval is the dominant 
component of restoration latency. This occurs in cases where a 
related SCM and SU both restart before the SM. Here the SU 
discovers and queries the SCM for services before the SM can 
find the SCM and register its service. In this situation, the SU 
must wait for the 31 s polling interval to elapse for issuing a 
second, successful query. Reducing the polling interval to 5 s 
brings restoration latency closer to that exhibited by the other 
architectures. 

Regarding efficiency, Table 4 shows that architectures with 
more components exchange more messages during a restoration 
scenario, but those architectures with the same number of 
components tend to exchange more messages when the scenario 
takes longer to complete. The three-party architecture proves 
slightly less efficient than the adaptive architecture because Jini 
incurs messages related to registration, which SLP does not 
support. 

One final point to note is the slightly better restoration 
latency of the three-party, as compared with two-party, 
architecture. This occurs because Jini delivers a service 
description in one step, concomitant with discovery, while UPnP 
requires a three-step process: discover the service, get the first 
part of the service description, and then get the second part of the 
service description. Should transmission delays increase, this 
factor would cause even greater difference in restoration latency. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6.2 Service Acquisition and Maintenance Impeded by Node 
Failures 

 
 In this experiment, we investigate effectiveness and efficiency of 
service discovery systems in detecting component failure and 
locating replacements. We model a client for a distributed real-
time control application that must discover two types of sensor 
and an actuator, then monitor sensor readings and control a 
process. The client has access to a population of sensors and 
actuators, each running on separate nodes that we allow to fail. 
The client, sensors, and actuators are supported by a discovery 
system, represented by configurations of the three architectural 
variants in our models: two-party (UPnP), three-party (Jini), and 

adaptive (SLP). Where applicable, the experiment topology may 
include one or more SCMs, which we also allow to fail. We 
compare configurations using functional effectiveness, measured 
as the proportion of time that the client possesses an operational 
set of sensors and actuators required to control the process. We 
also compare efficiency among configurations by the number of 
messages exchanged. 
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Figure 4. Three-party service discovery system with one 
service user, 12 service managers, and up to three service 
cache managers. 

6.2.1 Experiment Description. Our experiment models a 
topology that includes one (client) SU and 12 SMs, composed of 
four instances each of three service types: “fast” sensor, “slow” 
sensor, and actuator. Figure 3 illustrates such a topology 
configured as a two-party architecture and Figure 4 shows the 
same topology configured as a three-party architecture (including 
one to three SCMs). We compare the performance of eight 
different configurations, enumerated in Table 5.  Here, one 
configuration (A0) uses a two-party (UPnP) architecture and one 
(C0) uses an adaptive (SLP) architecture limited to two-party 
mode, three configurations (B1, B2, and B3) use a three-party 
(Jini) architecture, and three configurations (C1, C2, and C3) use 
an adaptive, three-party (SLP) architecture. 
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To establish initial conditions, we exercise each 
configuration until discovery completes and the SU acquires one 
service of each of the three service types. We then fail nodes 
according to the failure model described below. In order to focus 
exclusively on failure detection and recovery processes, we do not 
allow the SU to cache backup services, so at any time the SU 
holds at most one SD for each service type. After activation, a 
“fast” sensor transmits a reading every two seconds and a “slow” 
sensor transmits a reading every 30 seconds. The SU invokes the 
actuator after receiving an appropriate combination of readings 
from a “fast” and “slow” sensor. We select actuation times 
randomly from a uniform distribution with a mean of 60 s, 
provided the SU receives the required sensor readings. When the 
SU holds one SD for a service of each type (“fast” sensor, “slow” 
sensor, and actuator) and when each of those services is 
operational, then the application is considered functional. If the 
SU lacks SDs for one or more service type or if one or more of the 
SDs held by the SU describes a service instance that is not 
operational, then the application is considered non-functional. 
When non-functional, the SU client must first detect what services 
have failed and then initiate recovery procedures to discover 
replacements. During each experiment repetition, we accumulate 
the periods when the client is non-functional as well as the time 
required for failure detection and recovery. We also record 
message counts of the underlying service discovery system for the 
experiment duration. 

6.2.2 Failure Model. During the experiment duration , 
each SM node (and SCM node in three-party configurations) fails 
randomly and independently, although at least one service of each 
type always remains active so that the application could become 
functional. We let 

DT

λ  be the node failure rate that varies from 0% 
to 80% in 10% increments (though no failures occur when 

0=λ ).  The mean time to node failure is .   DMF Tt ⋅−= )1( λ
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Node failure times are randomly chosen from a “stepped” normal 
distribution with three steps: a 0.15 probability of failure before 

, a 0.7 probability of failure between  

and , and a 0.15 probability of failure between 

 and . Failure times are distributed uniformly 
within each step. When a node fails, affected services become 
unavailable for a time, selected from three failure duration classes, 
each with a different probability and duration. Short failures occur 
with a probability of 0.1 for a fixed (135 s) duration; intermediate 
failures occur with a probability of 0.7 for a duration selected 

uniformly on the interval 

MFMF tt 2.0− MFMF tt 2.0−

MFMF tt 2.0+

MFMF tt 2.0+ MFt2

[ ]300,180  s, long failures occur with a 

probability of 0.2 selected uniformly on the interval [ ]600,480  s. 
6.2.3 Failure Recovery Techniques. Table 6 gives common 

and configuration-specific parameters for failure recovery 
techniques we used in this experiment. We chose parameters that 
enable the SU to respond quickly to failure of remote services and 
to find replacements as soon as possible. We describe the 
recovery techniques employed in our model: first at the discovery 
level and then at the application level.  

Discovery-Level Recovery. For the two-party (UPnP) 
architecture, we use a heartbeat and soft-state strategy, choosing a 
TTL of 600 s for refreshing cached SDs. If not refreshed within 
the TTL, the SU purges the SD and commences periodic (120 s) 
Msearch queries to find a replacement service. When we model 
SLP in two-party mode, the SU both listens for lazy 
announcements (120 s) from SMs and periodically issues 
multicast queries for SMs (900 s) to find replacements. In three-
party configurations (both Jini and SLP), we model heartbeat 
monitoring through registration refreshes, choosing a refresh 
interval of 30 s for slow sensors and actuators and 300 s for fast 
sensors. If refreshes are missed, the SCM purges the SD. In the  
 
 
 Table 6.  Recovery Parameters for Node-Failure Experiment. 
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three-party architecture, a SU that discovers a SD through a SCM 
polls that SCM every 180 s to learn if the SD has been purged; if 
so, the SU assumes failure of the related service and also purges 
the SD. In both three-party and adaptive architectures, SUs and 
SMs search for SCMs by listening for lazy announcements (120 
s). 

Application-Level Recovery. Across all models, we adopt 
an identical application-level recovery policy: upon failure to 
receive a scheduled sensor reading (every 2 s for fast sensors and 
30 s for slow sensors) the SU immediately purges the related SD 
and commences search for a replacement. Similarly, failure to 
receive a response to an actuation attempt within 20 s causes the 
SU to purge the related SD and to commence search. A similar 
policy applies to detecting failed SCMs. If a SM does not receive 
a response when attempting to refresh a service registration, the 
SM assumes that the SCM has failed and begins searching for a 
replacement. Similarly, if a SU does not receive a response to a 
SCM query, the SU purges the SCM and begins to search. 

6.2.4 Metrics. We define  as accumulated time during 
which a client application is in a non-functional state. We 

compute the proportion of that a client application is in a 
functional state, or the client’s functional effectiveness, by the 

ratio . We compute the average functional 
effectiveness of a configuration at a particular failure rate 

NFT

DT

( ) DNFD TTTF /−=

λ for n 
experiment repetitions as  

( )
n

TTT
F

n

i i
D

i
NF

i
D∑ −

= =1

/
λ  

We measure as follows. As indicated, a client that has become 
non-functional first incurs a delay before detecting the failure. We 
call this delay detection latency. After detecting a non-functional 
state, the client may incur some delay while restoring required 
services. We call this delay recovery latency. Detection latency 
commences when a SM fails but the SU holds a SD provided by 
the SM. Once the SU discards the SD, or the SM recovers, 
detection latency ends. Recovery latency begins after the SU 
purges a SD for a failed service and commences search. Recovery 
latency ends when the SU finds a SD matching its needs. During 
periods when a client incurs either detection or recovery latency 
or both (the states can overlap), the client is non-functional, and 

we accumulate such periods in . 

NFT

NFT
6.2.5 Results. For each of the eight configurations in Table 

5, we set  and executed 60 repetitions for each 

failure rate 

s1800=DT

λ . Figure 5 shows average functional effectiveness 

λF  for each configuration as λ  increases. Figure 5 also includes 

a table that shows the summary statistic 800 −F , which is λF  
averaged across all values of λ  for each configuration. The 
results show that six of the eight configurations have similar 

curves for λF  and a 800 −F  of over 0.9.  The three-party 
configuration with one SCM (B1) and two SCMs (B2) perform 
less well, because as λ rises, the incidence of failure of the single 
SCM in B1 and concurrent failure of both SCMs in B2 increases. 
With no SCM to query for services, the SU remains non-
functional. Adding a third SCM (B3) reduces the probability of 

concurrent SCM failure sufficiently to raise 800 −F  to a level 

comparable with other configurations. The adaptive architecture 

achieves a comparable 800 −F  even with two or fewer SCMs, 
because when no SCMs can be found, the SU immediately 
switches to two-party mode to discover the available SMs. In the 
discussion below, we provide more detail on the effectiveness of 
these configurations by considering their comparative detection 
and recovery latencies.  
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As revealed in Figure 6, efficiency varies markedly among  

As revealed in Figure 6, efficiency varies markedly among 
the configurations. The two-party configurations A0 and C0 are 
notably more efficient than any three-party configuration. This 
occurs in part because more messages are needed for SUs and 
SMs to rendezvous through SCMs. These messages include 
heartbeats by the SCMs, registration and refresh of SDs by SMs, 
and polls of SCMs by the SU. In the three-party and adaptive 
architectures, differences in protocol also influenced efficiency. 
For equivalent configurations, the three-party architecture (B1, 
B2, and B3) proves more efficient than the adaptive architecture 
(C1, C2, and C3). This occurs, because in the former, Jini SCMs 
send lazy announcements at 120 s intervals, while Jini SUs and 
SMs employ aggressive search only at start-up. However, in the 
adaptive architecture, both SLP SCMs and SMs announce every 
120 s, while SUs and SMs repeat a six-probe aggressive search 
sequence at regular intervals (900 s).  We believe that with 
equivalent underlying behaviors, adaptive and three-party 
architectures would exhibit similar efficiency when configured 
with an equal number of SCMs. 

One additional point is worth noting. In the two-party 
configurations (A0 and C0), the message-count curves have 
increasing slope as λ  increases, because the SU must search 
more frequently for replacement services. Note, however, that 
three-party configurations have message-count curves with 
decreasing slope as λ  increases. The rate of message exchange 
decreases because SCMs fail more frequently and remain down 
for longer periods as λ rises, thus reducing the number of 
opportunities for SD refresh messages and SCM heartbeats. 
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Figure 5. Comparing average functional effectiveness λF for
different configurations in response to increasing rate of node
failures, where at least one SM of each type is operational (60
repetitions per data point). The table gives the 800−F , or
functional effectiveness averaged across all values of λ  for
each configuration. 
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6.2.6 Discussion. While three-party configurations with 
three SCMs (B3 and C3) yield comparable functional 
effectiveness to two-party configurations (A0 and C0), our 
experiment reveals quite different underlying causes. Figures 7(a)-

(c) display similar non-functional time ( ) under increasing 
failure rate for configurations A0, B3, and C3. The figures also 

decompose  into the proportions attributable to detection 
latency and recovery latency. In the two-party configuration, 

reported in Figure 7(a), about 90 % of  accrues while waiting 
to detect a failure; recovery occurs quickly. Analysis of execution 
traces showed most failures were detected through missed sensor 
readings or REXs received in response to failed actuations.  In the 
three-party configuration, shown in Figure 7(b), the situation is 

different. Here, the largest component of  is recovery latency. 
Execution traces for the three-party architecture show incidence of 
concurrent failure of all SCMs rising steadily with increasing 

NFT

NFT

NFT

NFT

λ . 
With no SCMs available, the SU is unable to find replacements 
for failed services until a SCM (1) recovers, (2) is discovered by 
the SU and SMs, (3) accepts registrations from available SMs, and 
(4) responds to queries from the SU. These factors dramatically 

increased the proportion of  attributable to recovery latency. 
This trend is more marked with fewer SCMs (not shown here). In 
the adaptive configuration, as displayed in Figure 7(c), over 90 % 

of NF  is again detection latency. Here, upon detecting failure, the 
SU switches to two-party mode when no SCMs can be found; 
thus, avoiding the delay incurred in waiting for a SCM to recover. 
Hence, the detection and recovery behavior of the adaptive 
configuration appears quite similar to the two-party configuration, 
which is also reflected in the similarity of Figures 7(a) and 7(c).  

NFT

T

 
6.3  Consistency Maintenance Impeded by Communication 

Failures 
 
In this experiment, we investigate effectiveness and efficiency of 
service discovery systems in maintaining consistency of 
information replicated throughout a distributed system. We model 

five clients (SUs) that each discover the same service manager 
(SM) and obtain a copy of the service description (SD) managed 
by the SM. Subsequently, the SM updates its local copy of the 
SD, creating an inconsistency with the SDs replicated to the SUs. 
We measure the probability that each SD will receive an updated 
copy of the SD prior to a deadline, the latency incurred in 
receiving the updated SD, and the number of messages exchanged 
to convey the update. We consider effects from two types of 
communication failure, interface failures and message losses, 
which could impede dissemination of the updated SD. We also 
compare two alternate consistency maintenance mechanisms: 
polling (recall Section 3.3.1) and notification (recall Section 
3.3.2), which are supported by selected discovery systems. 
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Figure 6. Comparing message counts for different 
configurations in response to increasing rate of node 
failures where at least one SM of each type is 
operational (60 repetitions per data point). 

 (a) Decomposition of Nonfunctional Time into Detection and 
Recovery Latency for Configuration A0. 

(b) Decomposition of Nonfunctional Time into Detection and 
Recovery Latency for Configuration B3. 

(c) Decomposition of Nonfunctional Time into Detection and 
Recovery Latency for Configuration B3. 
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6.3.1 Experiment Description. We compare performance of 
nine configurations, as enumerated in Table 7. One configuration 
(A0p) uses a two-party (UPnP) architecture (see Figure 8) with a 
polling regime to maintain consistency. Another configuration 
(A0n) combines the same architecture with notification. Four 
configurations (B1p, B1n, B2p and B2n) use a three-party (Jini) 
architecture (see Figure 9) with one or two SCMs and polling or 
notification. Three configurations (C0p, C1p and C2p) use an 
adaptive (SLP) architecture (with zero, one, or two SCMs) and 
polling (SLP does not include a notification mechanism).  

 

 

 

 

 

 

 

 

 

 

 

 

To establish initial conditions, we set aside an interval, up 

to time , for all SUs to discover the SM and obtain the SM’s 
SD. We then activate interface failures or message loss according 
to the appropriate failure model described below. In addition, we 

establish a deadline D  by which the change must propagate to all 
SUs, and then chose a time, randomly distributed on the uniform 

interval 

Qt

t

[ 2, DQ tt ] , to introduce a change in the SD on the SM. 

Here, we set  s and  s. Each experiment aims 
to restore consistency between the changed SD held by the SM 
and the cached copies of the SD held by the SUs. We recorded the 
time of change to the SD on the SM, the latency required to 

propagate the update to each SU prior to  (or failure to do so) 
and the number of messages exchanged. 

100=Qt 5400=Dt

Dt

6.3.2 Failure Models. We conducted separate experiments 
for interface failure and message loss. Table 8 summarizes 
relevant parameters for each failure model.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Interface Failure. In the interface-failure experiment, we let 
λ  be the interface failure rate.  During the experiment, each node 
suffers an interface failure at a time, randomly distributed on the 

uniform interval ( )[ ]λ⋅− QQQ ttt , . When activating each 
interface failure, there is an equal likelihood that the transmitter, 
receiver, or both fail. Once activated, each failure remains in 

effect for the duration of , after that the failure is remedied. 
During a failure interval, no messages are sent from a node with a 
failed transmitter, and a node with a failed receiver does not 
receive messages. For each configuration simulated, we varied 

λ⋅Dt

λ  
from 0 to 90 % in increments of 5 %. Table 7.  Nine Configurations Compared in Communication-

Failure Experiments.  
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Figure 9. Three-party service discovery system deployed 
in a seven- or eight-node topology: five service users, a 
service manager, and one or two service cache managers.

Message Loss. In the message-loss experiment, we let λ  
be the message-loss rate. For each attempt to transmit a message, 
whether on a reliable or unreliable channel, a uniform random real 

number is selected from the unit interval[ . If the number is 

less than 

]1,0

λ , the message is discarded. Loss of a message sent on 
a reliable channel stimulates a retransmission after an appropriate 
timeout. We varied λ  as in the interface-failure experiment. 

 
 
 
 

Table 8. Parameters for Interface Failure and Message Loss  
Models.
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6.3.3 Failure Recovery Techniques. We model recovery 
techniques at three levels: transport protocols, discovery 
protocols, and application. Recovery techniques for the transport 
protocols are described in Section 4.2.1. Table 9 shows the 
recovery techniques and related parameters we adopted for the 
discovery and application levels. 

Discovery-Level Recovery. In the two-party (UPnP) 
architecture, we use a heartbeat and soft-state strategy where SUs 
discarded SDs not refreshed within a TTL (of 1800 s). To enable 
rediscovery of SMs (and SCMs, where applicable) we adopt a 
discovery behavior consistent with the specific protocol (UPnP, 
Jini, or SLP) being modeled. In all configurations (except A0p, 
which does not employ registration), we chose the same TTL (of 
1800 s) after which registrations would be discarded if not 
renewed. For REXs received in response to registration or refresh 
attempts, to ad-hoc queries, or to change-service operations, the 
retries occur at intervals of 120 s (but only up to a maximum of 
540 s). To comply with the Jini and UPnP specifications, there are 
no retries after a REX when attempting to issue notifications.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Application-Level Recovery. For configurations (A0p, 

B1p, B2p, C0p, C1p, and C2p) that use polling, we set the 
polling interval to 180 s. In (UPnP) configurations (A0p and 
A0n), SUs discard a SD after (HTTP GET) queries to the SM 
result in nothing but REXs for a total of 540 s. In other 
configurations, SUs discard a SCM after receiving nothing but 
REXs over 540 s while attempting to interact with the SCM.  

6.3.4 Metrics. We evaluate update effectiveness, 
responsiveness, and efficiency. Update effectiveness measures the 
probability that a change to a SD will propagate to a given SU 

before the deadline .  We let n be the number of repetitions of 

an experiment, m be the number of SUs in a topology, and  be 
the time that an updated SD is propagated to SU j, 

Dt

jit′
mj ≤≤1 , in 

experiment repetition i, . Then, we define update 
effectiveness for the failure rate 

ni ≤≤1
λ over n repetitions as 
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defines whether a change in a SD was propagated to the jth SU 
during the ith repetition  (i.e., 1 if true, 0 if false). 

Update responsiveness measures the latency in propagating 

the SD update. We let  be the time the SD change occurred on 

the SM in experiment repetition i. Update responsiveness 
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λR~  is 

the median of all  at a particular value of ijp−1 λ  where 
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is the proportion of time required to propagate an update to the jth 

SU in the ith repetition  at it′ λ . Table 9.  Key Model Parameters for Communication-
Failure Experiments. Update efficiency measures the effort required to (attempt 

to) maintain consistency. Analysis of our experiment 
configurations revealed a minimum number of messages, x , that 
must be sent to propagate a change to all SUs. This minimum 
( 7=x ) occurred for the three-party configuration with 
notification and one SCM (B1n)2. We define update efficiency 
based on the ratio of x  to the actual number of messages 
observed. We let y be the number of messages sent while 
attempting to propagate a change from the SM to the SUs in a 
given repetition. Then, for n number of experiment repetitions, we 
define average update efficiency at a particular failure rate λ as 
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6.3.5 Interface-Failure Results. For each configuration in 
Table 7, we executed 1000=n  repetitions at each interface-

failure rate λ . Figure 10 shows update effectiveness  for the 
configurations as 

λU
λ  increases. The figure also includes a table 

with mean update effectiveness 900 −U , which is  averaged 
across all values of 

λU
λ  for each indicated configuration. Overall, 

these results show that a two-party architecture, or an adaptive 
architecture that has a two-party mode, provides superior 
effectiveness to a three-party architecture (at least given 
topologies limited to one or two SCMs). This occurs because each 
updated SD must propagate over only one channel (SM to SU) in 
two-party cases, but over two channels (SM to SCM and SCM to 
SU) in three-party cases. For both three-party and adaptive 

architectures, 900 −U  improves with the number of SCMs due to 
the reduction in the incidence of joint failure of both channels. We 
note that polling yields better effectiveness than notification. For 
example, when comparing three-party polling with one SCM 
(B1p) against three-party notification with one SCM (B1n), the 
advantage of polling appears as λ  exceeds 35 % because when 

                                                 
2 Recall that the two-party (UPnP) architecture requires a multiple-
message exchange to convey SDs. 
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notifications fail, SD updates are propagated by recovery 
mechanisms, which activate only after some delay. On the other 
hand, polling persists with retries after receiving a REX. We note 
that configurations using notification also exhibit anomalous 
behavior when λ  is in the range [  %; we discuss the 
reasons for this below in Section 6.3.7. 

]25,5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 shows median update responsiveness λR~  for all 
configurations as λ  increases. Generally, the ranking of 
architectures for responsiveness is similar to effectiveness. Where 
employed, notification exhibits better responsiveness than polling, 
which incurs increased latency from the 180 s polling interval. 

Figure 11 also shows a steep drop-off in λR~  for all configurations 

as λ  increases beyond the  % range, where failures 
prevent initial propagation of the updated SD, forcing invocation 
of recovery actions that cannot succeed until paths are restored. 
Thus, even though some configurations achieved effectiveness of 
over 0.9 as 

[ 30,20 ]

λ  reaches 70% (see Figure 10), responsiveness for all 
configurations approaches zero. Three-party configurations 
experience longer delays at high values of λ  as paths to SCMs 
become increasingly unavailable. 

Figurre 12 shows average efficiency λE  for experiment 
configurations as λ  increases. The table included in Figure 12 

shows 900 −E , which is λE  across all values of λ  for each 

indicated configuration. Here, λE  declines for all configurations 
as λ  increases. This reflects a rising number of messages 
generated when recovery strategies are invoked more frequently 
as λ  rises. Configurations using more SCMs are less efficient (but 
more effective) than similar configurations with fewer SCMs. The 
adaptive architecture appears less efficient than the three-party 
architecture with an equivalent number of SCMs for the reasons 
described above in section 6.2.5. Again, we expect the use of 

equivalent underlying behaviors would yield comparable 
efficiencies. 
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Figure 11. Comparing median update responsiveness ( λR~ ) 
for different configurations in response to increasing rate of 
interface failures (1000 repetitions per data point). The table 
gives 900

~
−

Some other points seem worth noting. The three-party 
configurations using notification (B1n and B2n) are more 
efficient than similar configurations using polling (B1p and B2p) 
because in Jini each SU poll to a SCM involves a request followed 
by a reply, while a Jini SCM notification is a single message. 
However, for 40<λ %, two-party (UPnP) notification (A0n) 
appears less efficient than two-party polling (A0p). This occurs 
because when UPnP notifications are lost, recovery strategies 
must often be used, thus prolonging the time to propagate the 
updated SD and increasing message counts.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

R , which is λR~ , averaged across all values of λ  for 
each configuration. 

Figure 10. Comparing update effectiveness ( λU ) for different 
configurations in response to increasing rate of interface failures 

(1000 repetitions per data point). The table gives 900 −U , or λU  
averaged across all values of λ  for each configuration. 
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gives 900 −E , which is λE averaged across all values of λ  for 
each configuration. 
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6.3.6 Message-Loss Results. For each configuration in 
Table 7, we executed  repetitions at each message-loss 
rate 

200=n
λ . Figure 13 shows update effectiveness λU  for the 

configurations as λ  increases. Figure 13 also includes a table that 

shows 900 −U  across all values of λ  for each indicated 
configuration. Overall, these results show that most configurations 
provide an effectiveness of 0.95 or better until λ  exceeds 80 %. 
Overall, effectiveness under message loss conditions is higher 
than under interface failure conditions. This is because interfaces 
fail for protracted periods at higher values of λ , increasing the 
probability that channels remain blocked until , so updates 
never get through. In contrast, message loss affects only 
individual transmissions, allowing recovery strategies more 
opportunities to propagate the update before Dt . Polling continues 
to yield better effectiveness than notification. The two-party 
configuration with polling (A0p) achieves a mean effectiveness of 
0.99, due to the combined advantages of using polling with just 
two parties (which requires transiting one channel rather than 
two). We note that the two-party configuration with notification 
(A0n) and the three-party notification with one SCM (B1n) 
exhibit anomalous behavior and reduced effectiveness as 

Dt

λ  
surpasses 20 %; we discuss the reasons for this below in Section 
6.3.7. Responsiveness (not shown here) exhibits a steep decline 
after 80>λ %, compared with 30>λ % for interface failure. 
The higher responsiveness under message loss conditions occurs 
for the same reasons as higher effectiveness. Under message loss, 
notification also continues to provide better responsiveness than 
polling.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14 shows average efficiency λE  for experiment 

configurations as λ  increases and includes a table for 900−E  for 
for each configuration. As in the case of effectiveness and 
responsiveness, all configurations prove more efficient under 
message loss conditions than under interface failure for the 
reasons given above.  The better efficiency is also reflected in the 

overall more gradual decline in the message loss efficiency 
curves. Otherwise, the general ordering of efficiencies for the 
various configurations appears similar under both interface failure 
and message loss. We note the reduced efficiency of the two-party 
(UPnP) notification (A0n) above 20=λ % in comparison with 
two-party polling (A0p). In A0n, efficiency suffers from cases 
where notifications are lost and recovery procedures are required 
to propagate the update (taking more time and requiring more 
messages). The combination of lost notifications and use of 
recovery also causes a sharp decline in the efficiency of the three-
party notification with a single SCM (B1n), which at low values 
of λ , generates the fewest (7) messages to propagate updates. 
Another exception is the three-party configuration using 
notification with two SCMs (B2n), which exhibits increasing 

efficiency over the failure rate range [ % and overtakes the 
three-party configuration using polling with one SCM (B1p). This 
counterintuitive result occurs because in some repetitions, lost 
messages cause the SM or SUs to discover only one of the two 
SCMs; thus, messages that would normally be duplicated to both 
SCMs are not. 

]35,5

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6.3.7 Discussion. The notification mechanism included in 

UPnP and Jini (and other distributed systems) proved 
unexpectedly ineffective at disseminating updates under certain 
conditions. Foremost, under low interface-failure rates (in the 
range [ ]30,5 %) our results exhibit saw-tooth phenomena for 
configurations using notification. The dip is most pronounced 
(nearly 15%) for the two-party (UPnP) configuration (A0n) and 
less pronounced (around 5%) for the three-party (Jini) 
configurations (B1n and B2n). In the two-party case, analysis of 
execution traces showed a large number of notifications were lost 
when either the SM transmitter was inoperable (causing 
notifications to all SUs to be lost) or when SU receivers were 
inoperable (causing lost notifications to individual SUs). Since 
neither UPnP nor Jini require notification senders to retry after a 
REX, updated information must be disseminated through a 
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Figure 13. Comparing update effectiveness ( λU ) for 
different configurations in response to increasing rate 
of message loss (200 repetitions per data point). The 

table gives 900 −U , or λU  averaged across all values of 
λ  for each configuration. 
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recovery mechanism. At low failure rates, a notification can be 
lost to an interface failure, which is repaired prior to the next 
announcement or registration-refresh attempt. Under such 
conditions, recovery mechanisms are not invoked and the SU does 
not obtain an updated SD. Polling proves more effective because 
the SU checks periodically (180 s intervals) and persistently for 
updated information and retrieves the SD when indicated.  

A similar sequence of events occurs in the three-party case, 
but the effects are more modest. The three-party configurations 
require a SM to first propagate a change to a SCM. Failure to 
propagate a change results in a REX that causes the SM to retry 
the change for up to 540 s, during which time the interface failure 
may be repaired. If still unconfirmed after 540 s, the SM purges 
the SCM and initiates aggressive discovery. After rediscovering 
the SCM, the SM propagates the change, and the SCM then 
notifies registered SUs. Even with this redundancy, there still is 
some chance that a SU receiver is blocked and thus unable to 
receive notification. The redundancy does, however, increase the 
probability that an updated SD reaches a SU. 

Notification (as specified for UPnP and Jini) also appears 
less effective under message loss. Lack of application-level retries 
to deliver notices leads to significant decline in update 
effectiveness above 20=λ %. This appears for the relevant two-
party (UPnP) configuration (A0n) and three-party (Jini) 
configuration (B1n), both of which use notification. Above 

20=λ %, the incidence of undelivered notifications increases 
and, unless recovery is stimulated, the updated SD is not 
disseminated.  In configuration A0n, as λ  exceeds 60 %, lost 
registration-refresh requests trigger recovery procedures with 
increasing frequency, which causes propagation of the updated 
SD when a registration is reestablished. This process slightly 
improves and then maintains effectiveness within the failure rate 

range %, causing this curve to echo the saw-tooth 
feature in the update effectiveness curve for A0n under interface 
failure. Above 

[ 80,60 ]
80=λ %, lost messages effectively close the 

channel, and effectiveness collapses for all configurations. 
For the three-party configuration (B1n), loss of change 

requests (from the SM) as well as registration refreshes (from the 
SM and SUs) also stimulate recovery procedures that partly 
compensate for lost notifications. When a second SCM is added 
(configuration B2n) update effectiveness improves because the 
SM now has two paths through which to disseminate updates to 
SUs.   

 
7. CONCLUSIONS 
 
Overall, we found designs for first-generation discovery systems 
can be robust under difficult failure environments. Across all 
experiments, most configurations exhibited an effectiveness of 
better than 0.9 in obtaining services or propagating updates for 
failure rates approaching (often exceeding) 80 %. Configurations 
proved ineffective only when all essential nodes failed or were 
unreachable, or when recovery actions were not activated (as 
occurred in response to lost update notifications). Similarly, 
extensive delays in propagating updates depended on the duration 
of path outages.  

For our scenarios and metrics, two-party configurations (or 
three-party configurations that could adapt to two-party mode) 
appeared more robust than three-party configurations (where 
robustness improved with the number of replicated directories). 
Deploying three directory replicas yielded robustness equal to 

two-party configurations. In tradeoff, increasing the number of 
directory replicas lowers system efficiency by increasing the 
number of messages exchanged. In most cases, we found the 
adaptive architecture with one directory achieved robustness 
comparable to other configurations, while providing better 
efficiency than configurations with replicated directories.  

To disseminate updates, we found polling more effective 
than notification. Our polling regime used persistent retries, while 
our notification regime depended only on reliable transport 
protocols, falling back to alternate recovery mechanisms when 
notifications could not be delivered. The alternate recovery 
mechanisms were not always activated at lower failure rates. This 
anomaly appeared in effectiveness plots for configurations using 
notification. Notification generally conveyed updates with less 
delay than polling. In the two-party architecture, polling was more 
effective, so scenarios tended to end earlier and require fewer 
messages. 

Beyond our methodology and comparisons, we identified 
and discussed the most significant design and configuration 
decisions that influence robustness and efficiency in first-
generation discovery systems. We showed how available 
architectural alternatives, as well as choices for consistency 
maintenance and recovery strategies, lead to robustness-efficiency 
tradeoffs. We also showed how faulty assumptions regarding 
recovery strategies could unexpectedly degrade robustness and 
efficiency. The information provided should convey a better 
understanding of failure behavior in existing discovery systems, 
allowing potential users to configure deployments for high 
robustness at low cost. The discussions presented here could also 
help to improve designs for future discovery systems. 
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